

16-Channel Constant Current LED Sink Driver with Silent Error Detection and Current Gain

Features

- 16 constant-current output channels
 Constant output current range: 3~90mA
 - 8-90mA @ 5V supply voltage
 - 3-70mA @ 3.3V supply voltage
- In-message error detection
 - Both open-circuit and short-circuit LEDs can be detected
 - On-the-fly error detection
 - Data-in, error-out; both errors are merged and coded with zeros
- Compulsory error detection
 - Full panel, data independent
 - Silent error detection with 0.25mA in 700ns
- Settable threshold voltage for LED short-circuit detection
- Thermal detection
 - Over-temperature report (e.g. temp.>150 °C)
- 64-step programmable current gain: from 12.5% to 200%
- Excellent output current accuracy,
 - Between channels: <±1.5% (typ.), and
 - Between ICs: <±3% (typ.)
- Fast response of output current
 - Min. output pulse width of OE:35ns with good uniformity between output channels
- Staggered delay of output, preventing from current surge
- 30MHz clock frequency
- Schmitt trigger input

Product Description

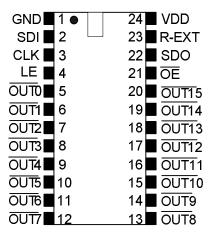
MBI5039 is an enhanced 16-channel constant current LED sink driver with smart error detection and output current gain. MBI5039 succeeds MBI5026 and also exploits **PrecisionDrive™** technology to enhance the output characteristics. Furthermore, MBI5039 adopts **Share-I-O™** technology to be backward compatible with MBI5026, MBI5027 and MBI5029 in pin definition and to extend the functionality for LED� in-message error detection, compulsory error detection, and current gain control in LED display systems.

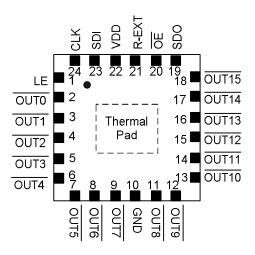
MBI5039 contains a 16-bit shift register and a 16-bit output latch, which convert serial input data into parallel output format. At MBI5039 output stages, sixteen regulated current ports are designed to provide uniform and constant current sinks with small skew between ports for driving LEDs within a wide range of forward voltage (V_F) variations. Users may adjust the output current from 5mA to 90mA with an external resistor R_{ext} , which provides users flexibility in controlling the light intensity of LEDs. MBI5039 guarantees to endure maximum 17V at the output ports. Besides, the high clock frequency, up to 30MHz, also satisfies the system requirements of high volume data transmission.

With in-message error detection, MBI5039 can detect individual LED for both open- and short-circuit errors on-the-fly without extra components. The serial data could be transferred into MBI5039 via the pin SDI, shifted in the shift register, and the outputs perform open- and short-circuit detection simultaneously.

Besides the default in-message error detection, MBI5039 provides compulsory error detection. Once the dedicated command is issued, all of the output ports will be turned on about 700ns interval with current 0.25mA. Since the turn-on duration and current are so small, the image quality will not be impacted. All of the channels are detected no matter the input data is zero or one. The dedicated command is the communication of CLK and LE.

With the above two detections, the system can detect LED errors completely. Moreover, the threshold voltage for short-circuit detection is settable with the variation of different LED forward voltage, and the system controller can easily detect the short-circuit error. Therefore, the error detection is easy to use.

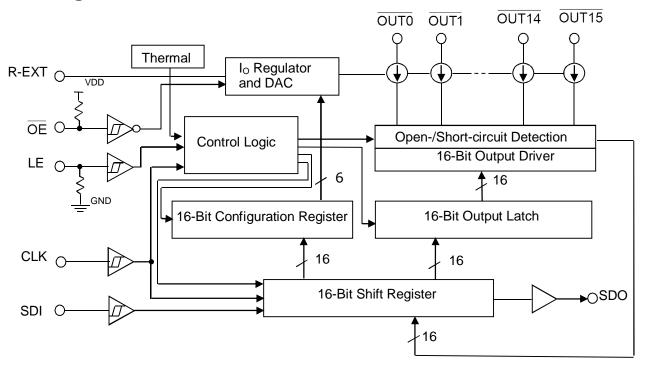

In addition, MBI5039 also allows users to adjust the output current level by setting a programmable configuration code. The code is sent into MBI5039 via the pin SDI. The falling edge of LE would latch the code in the shift register into a built-in 16-bit configuration register, instead of the output latch. The gain code would affect the voltage at the terminal R-EXT and control the output current regulator. The output current can be adjusted finely by a gain ranging from 12.5% to 200% in 64 steps.


The temperature of the chip itself is also monitored and the thermal warning flag can be read so that the system can adopt essential procedure to protect the system.

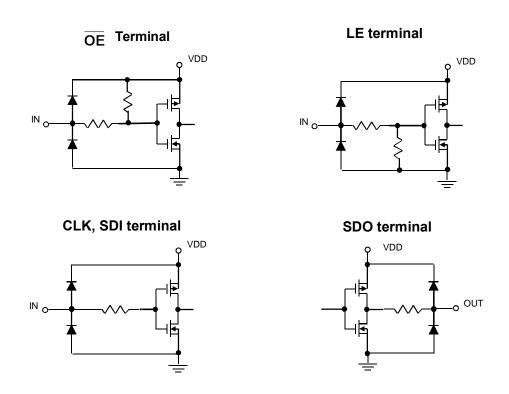
With the **Share-I-O™** technique, MBI5039 could be a drop-in replacement of predecessors. The printed circuit board originally designed for MBI5026/7/9 may be also applied to MBI5039 only that the controllers have to be upgraded and \overline{OE} needs to be controllable.

- 2 -

Pin Configuration


MBI5039GF/GP

MBI5039GFN


Terminal Description

Pin Name	Function			
GND	Ground terminal for control logic and current sinks			
SDI	Serial-data input to the shift register			
CLK Clock input terminal used to shift data on rising edge and carries command information when LE is asserted.				
LE	Data strobe terminal and asserting command with adequate CLK pulses			
OUT0 ~ OUT15	Constant current output terminals			
ŌĒ	Enable output drivers to sink current. When its level is low (active), the output drivers are enabled; when high, all output drivers are turned OFF (blank). The signal is used for error detection. Please refer to error detection sections for further details.			
SDO	Serial-data output to the SDI of the following driver IC			
R-EXT	Input terminal used for connecting an external resistor in order to set up the current level of all output ports			
VDD	3.3/5V supply voltage terminal			

Block Diagram

Equivalent Circuits of Inputs and Outputs

Maximum Ratings

Char	acteristic	Symbol	Rating	Unit
Supply Voltage		V_{DD}	0~7	V
Input Pin Voltage (SDI,	OE, LE, CLK, R-EXT)	V _{IN}	-0.4~V _{DD} +0.4	V
Output Current (OUT0~	OUT15)	I _{OUT}	+100	mA
Sustaining Voltage at OU		V_{DS}	-0.5~17	V
GND Terminal Current		I _{GND}	+1600	mA
Davier Dissipation	GF Type		2.51	
Power Dissipation (On PCB, Ta=25°C) *	GP Type	P_D	2.04	W
(0111 013, 14=20 0)	GFN Type		3.19	
The same of Descietance	GF Type		49.86	
Thermal Resistance (On PCB, Ta=25°C) *	GP Type	$R_{th(j-a)}$	61.20	°C/W
(311 32, 14-23 3)	GFN Type		39.15	
Junction Temperature		$T_{j,max}$	150**	°C
Operating Ambient Temp	perature	T_{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
ECD Detina	HBM (MIL-STD-883G Method 3015.7, Human Body Mode)	-	Class 3A (4000V~7999V)	-
ESD Rating	MM (JEDEC EIA/JESD22-A115, Machine Mode)	-	Class B (200V~399V)	-

^{*}The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51.

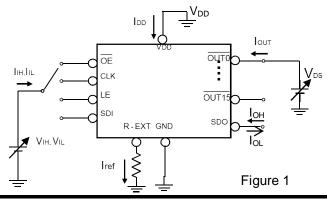
Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. User should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

^{**} Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.

Electrical Characteristics (V_{DD}=5.0V, Ta=25°C)

Characte	eristics	Symbol	Cond	Min.	Тур.	Max.	Unit		
Supply Voltage	Э	V_{DD}	-	4.5	5.0	5.5	V		
Sustaining Volt Ports	age at OUT	VDS	OUT0 OUT15	-	-	17.0	V		
		IOUT	Refer to West Cir Characteristics+	cuit for Electrical	8	-	90	mA	
Output Current		I _{OH}	SDO		-	-	-1.0	mA	
		I _{OL}	SDO		-	-	1.0	mA	
land t \ /altana	%d+level	V _{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V	
Input Voltage	‰+level	V _{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V	
Output Leakag	e Current	I _{OH}	V _{DS} =17.0V and c	hannel off	-	-	0.5	Α	
Outout Valtage	CDC	V _{OH}	I _{OH} =-1.0mA		V _{DD} -0.4	-	-	V	
Output Voltage	SDO	V _{OL}	I _{OL} =+1.0mA	I _{OL} =+1.0mA			0.4	V	
Current Skew (Channel)		dl _{OUT1}	I _{OUT} =20mA V _{DS} =1.0V R _{ext} =700ô		-	±1.5	±3.0	%	
Current Skew (IC)		dl _{OUT2}	I _{OUT} =20mA V _{DS} =1.0V R _{ext} =700ô		-	±3.0	±6.0	%	
Output Current Output Voltage		%/dV _{DS}	V _{DS} within 1.0V a R _{ext} =700ô @20m	-	±0.1	±0.3	% / V		
Output Current Supply Voltage	Regulation*	$\%/dV_{DD}$	V _{DD} within 4.5V and 5.5V		-	±0.5	±1.0	% / V	
LED Open Dete Threshold Volta		$V_{\text{OD,TH}}$	-		-	0.35	-	V	
Pull-up Resisto	r	R _{IN} (up)	ŌĒ		250	450	800	K	
Pull-down Resi	stor	R _{IN} (down)	LE		250	450	800	K	
		I _{DD} (off) 1	R _{ext} =Open, OUT	0~OUT15 =Off,	-	2.2	-		
	%Off+	I _{DD} (off) 2	R _{ext} =700 , OUT	0 ~ OUT15 = Off,	-	5.4	-		
Supply Current		I _{DD} (off) 3	R _{ext} =230 , OUT	-	8.5	-	mA		
	%On :	I _{DD} (on) 1	R _{ext} =700 , OUT	0 ~ OUT15 =On,	-	5.9	-	1	
	‰n+	I _{DD} (on) 2	R _{ext} =230 , OUT	0~OUT15 =On,	-	9.3	-		
Thermal Flag	Temperature	T _{TF}	Junction Tempera	ature	135	150	165	°C	

^{*}One channel on.


^{**}LED short detection threshold voltage (V_{SD,TH}) is a configurable voltage. Please see the **@**efinition of Configuration Register+for details.

Electrical Characteristics (V_{DD}=3.3V, Ta=25°C)

eristics	Symbol	Cond	Min.	Тур.	Max.	Unit		
je	V_{DD}	-	3.0	3.3	3.6	V		
Itage at OUT	V _{DS}	OUT0~ OUT15	-	-	17.0	V		
	I _{OUT}			3	-	70	mA	
t	I _{OH}	SDO		-	-	-1.0	mA	
	I _{OL}	SDO		-	-	1.0	mA	
%d+level	V _{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V	
‰+level	V _{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V	
je Current	I _{OH}	V _{DS} =17.0V and cl	hannel off	-	-	0.5	Α	
200	V _{OH}	I _{OH} =-1.0mA		V _{DD} -0.4	-	-	V	
, 300	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V	
(Channel)	dl _{OUT1}	I _{OUT} =20mA V _{DS} =1.0V		-	±1.5	±3.0	%	
(IC)	dl _{OUT2}	I _{OUT} =20mA V _{DS} =1.0V R _{ext} =700ô		-	±3.0	±6.0	%	
	%/dV _{DS}		-	±0.1	±0.3	% / V		
t vs. e Regulation*	$\%/dV_{DD}$	V _{DD} within 3.0V and 3.6V		-	±0.5	±1.0	% / V	
	$V_{\text{OD},\text{TH}}$	-	-	0.35	-	V		
or	R _{IN} (up)	ŌĒ		250	450	800	K	
istor	R _{IN} (down)	LE		250	450	800	K	
	I _{DD} (off) 1	R _{ext} =Open, OUT	0 ~ OUT15 =Off,	-	1.8	-		
%⊋ff+	I _{DD} (off) 2	R _{ext} =700 , OUT	$\overline{O} \sim \overline{OUT15} = Off,$	-	5.0	-		
	I _{DD} (off) 3	R _{ext} =230 , OUT	-	8.0	-	mA		
%On I	I _{DD} (on) 1	R _{ext} =700 , OUT	0~OUT15 =On,	-	5.3	-		
70 <i>0</i> 11+	I _{DD} (on) 2	R _{ext} =230 , OUT	0~OUT15 =On,	-	8.4	-		
Temperature	T _{TF}	Junction Tempera	ature	135	150	165	°C	
	%_Hevel ge Current ge SDO (Channel) (IC) t vs. e Regulation* t vs. e Regulation* tection tage** or	Second S	Part Part	Vob Outload at OUT Vob Outload at OUT Vob Outload at OUT Vob Outload Outload at Out Vob Outload Outloa		Se	Second S	

^{*}One channel on.

Test Circuit for Electrical Characteristics

^{**}LED short detection threshold voltage (V_{SD,TH}) is a configurable voltage. Please see the **@**efinition of Configuration Register+for details.

Switching Characteristics (V_{DD}=5.0V, Ta=25°C)

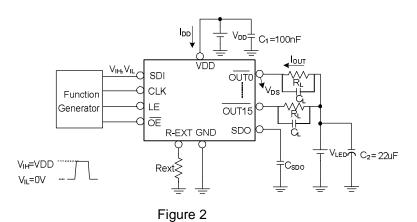
	inting	Symbol Condition Min. Typ. Max. Un								
Character	T	Symbol	Condition	Min.	Тур.		Unit			
	LE-SDO	t _{pLS}		-	55	70	ns			
Propagation Delay Time	CLK-SDO	t _{pLH1}		-	25	30	ns			
(‰+to ‰+)	LE-OUT0	t _{pLH2}		-	20	-	ns			
	OE-OUT0	t _{pLH3}		-	20	-	ns			
	LE-SDO	t _{pLS}		-	55	70	ns			
Propagation Delay Time	CLK-SDO	t _{pHL1}		-	25	30	ns			
(%d+to ‰+)	LE-OUT0	t _{pHL2}		-	28	-	ns			
	OE - OUTO	t _{pHL3}		-	28	-	ns			
Staggered Delay of Output	OUTn - OUTn + 1	t _{stag}	V _{DD} =5.0V	-	-	5	ns			
Pulse Width	CLK	t _{w(CLK)}	V _{DS} =1.0V	15	-	-	ns			
Puise Widin	LE	t _{w(L)}	V _{IH} =V _{DD} V _{II} =GND	15	-	-	ns			
Data Clock Frequency		F _{CLK}	R _{ext} =700ô	-	-	30	MHz			
Hold Time for LE		t _{h(L)}	$R_L=162\hat{o}$ $C_L=10pF$	10	-	-	ns			
Setup Time for LE		t _{su(L)}	I _{OUT} =20mA	10	-	-	ns			
Hold Time for SDI		t _{h(D)}	$C_1=100nF$ $C_2=22 F$	5	-	-	ns			
Setup Time for SDI		t _{su(D)}	C _{SDO} =10pF	3	-	-	ns			
Maximum CLK Rise Time	*	t _r		-	-	500	ns			
Maximum CLK Fall Time*		t _f		-	-	500	ns			
SDO Rise Time		t _{r,SDO}		-	10	-	ns			
SDO Fall Time		t _{f,SDO}		-	10	-	ns			
Output Rise Time of Outp	ut Ports	t _{or}		15	25	-	ns			
Output Fall Time of Outpu	it Ports	t _{of}		10	15	-	ns			
In-message error detection	t _{ERR-I}		300	350	400	ns				
Compulsory error detection	t _{ERR-C}		600	650	700	ns				
OE with uniform output**	t _{w(OE)}		-	25	-	ns				
Output On-time Error***		t _{ON_ERR}	On-off latch data=all %d-; 25ns OE low level one shot pulse input	0	12	25	ns			
OE with uniform output		t _{w(OE)}	R _{ext} =230ô I _{OUT} =60mA	35	40	-	ns			

^{*} $\underline{\text{If t}_r}$ or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded drivers.

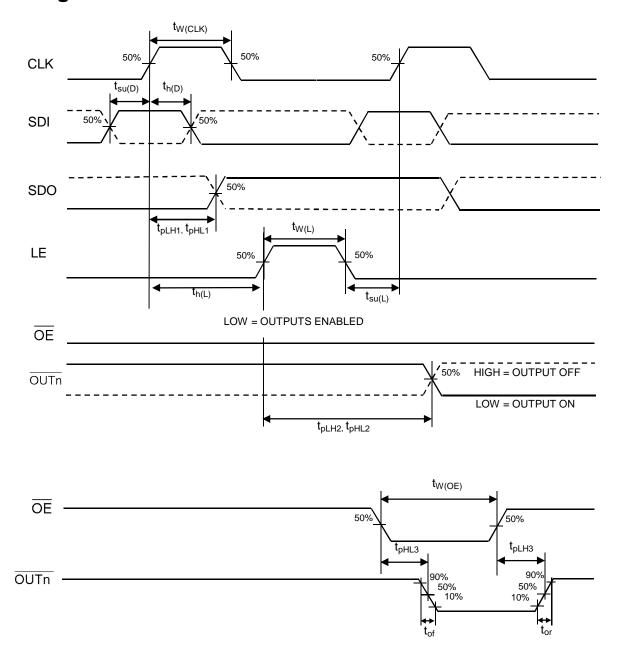
^{**} $\overline{OE} = t_{or} + t_{of}$.

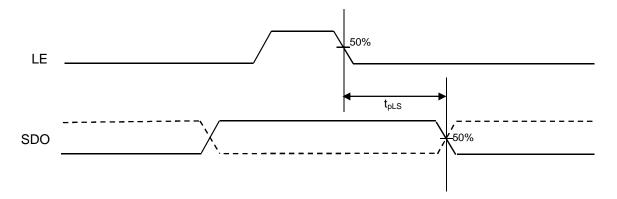
^{***}Output pulse width= \overline{OE} + t_{ON_ERR} . Users should set the appropriate \overline{OE} pulse width based on the required uniformity of \overline{OE} gray scale.

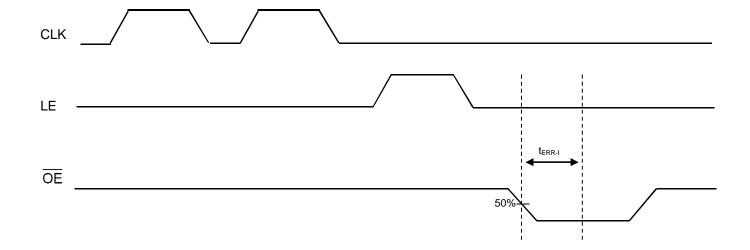
Switching Characteristics (V_{DD}=3.3V, Ta=25°C)

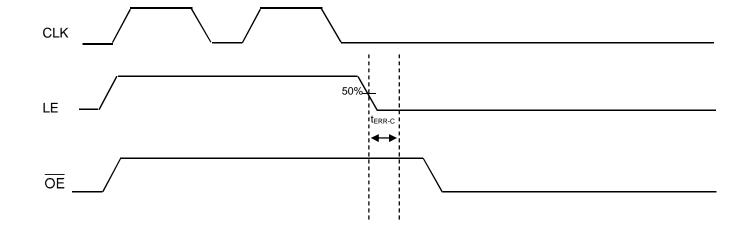

Characteri	stics	Symbol	Condition	Min.	Тур.	Max.	Unit
	LE-SDO	t _{pLS}		-	85	100	ns
Propagation Delay Time	CLK-SDO	t _{pLH1}	1	-	30	35	ns
(‰+to ‰+)	LE-OUT0	t _{pLH2}	-		30	-	ns
	OE - OUTO	t _{pLH3}]	-	30	-	ns
	LE-SDO	t _{pLS}		-	85	100	ns
Propagation Delay Time	CLK-SDO	t _{pHL1}]	-	30	35	ns
(%d+to % o+)	LE-OUT0	t _{pHL2}		-	40	-	ns
	OE - OUTO	t _{pHL3}]	-	40	-	ns
Staggered Delay of Output	OUTn - OUTn + 1	t _{stag}	\/ _2 2\/	-	-	5	ns
Dulco Width	CLK	t _{w(CLK)}	$V_{DD}=3.3V$ $V_{DS}=1.0V$	20	-	-	ns
Pulse Width	LE	t _{w(L)}	V _{IH} =V _{DD}	15	-	-	ns
Data Clock Frequency		F _{CLK}	V _{IL} =GND R _{ext} =700ô	-	-	25	MHz
Hold Time for LE		t _{h(L)}	R _L =162ô C _L =10pF	10	-	-	ns
Setup Time for LE		t _{su(L)}	$I_{OUT}=20$ mA	10	-	-	ns
Hold Time for SDI		t _{h(D)}	$C_1=100nF$ $C_2=22 F$	5	-	-	ns
Setup Time for SDI		t _{su(D)}	$C_{SDO}=10pF$	3	-	-	ns
Maximum CLK Rise Time	*	t _r		-	-	500	ns
Maximum CLK Fall Time*		t _f		-	-	500	ns
SDO Rise Time		$t_{r,SDO}$		-	10	-	ns
SDO Fall Time		$t_{f,SDO}$		-	10	-	ns
Output Rise Time of Outp	ut Ports	t _{or}		20	30	-	ns
Output Fall Time of Outpu	it Ports	t _{of}		30	40	-	ns
In-message error detectio	t _{ERR-I}		300	350	400	ns	
Compulsory error detection	t _{ERR-C}		600	650	700	ns	
OE with uniform output**	t _{w(OE)}]	-	50	-	ns	
Output On-time Error***	t _{ON_ERR}	On/off latch data=all %b+, 50ns OE low level one-shot pulse input	0	24	35	ns	
OE with uniform output		$t_{w(OE)}$	Rext=230ô I _{OUT} =60mA	-	300	-	ns

^{*}If t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded drivers.

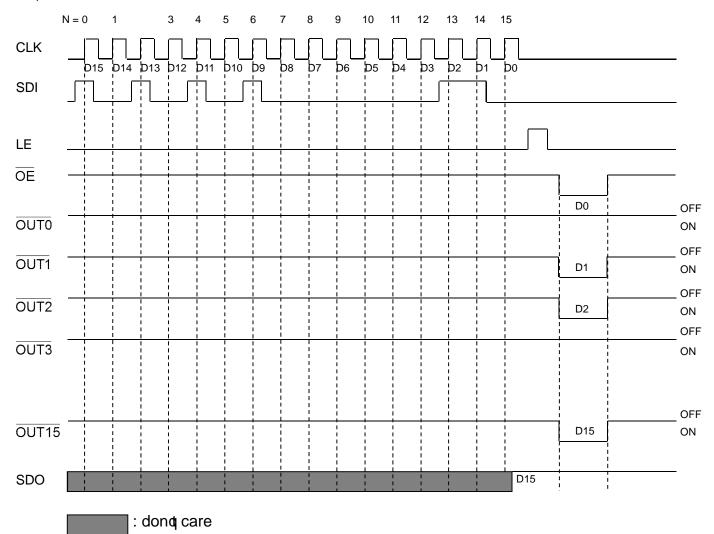

^{**} OF =tor+tor


^{***}Output pulse width= \overline{OE} + t_{ON_ERR} . Users should set the appropriate \overline{OE} pulse width based on the uniformity of \overline{OE} gray scale.


Test Circuit for Switching Characteristics



Timing Waveform



Control the Output Ports

The data is shifted from the SDI to the 16-bits shift registers. When both the LE is asserted and no CLK toggles when the LE is high, the data in the shift register is latched to the output latch. This is so-called %eries-in parallel out+mechanism.

When the OE is low and the data in the output latch is %+, the output channel is turned on and the current sinks into the output port. If LEDs are connected to the output port with adequate power source, the LEDs will be lit up with the pre-set current.

Control Command

	Signals Combination*	Description
Command Name	Number of CLK Rising Edge when LE is asserted	The Action after a Falling Edge of LE
Latch data (In-message error detection)	0	Latch the serial data to the output latch. Perform the in-message error detection if it is enabled in the setting of configuration register. In-message error detection includes open-circuit detection and short-circuit detection.
Compulsory open-circuit detection	1	Issue %pen-circuit error detection+once. The data latching will not occur.
Compulsory short-circuit detection	2	Issue %hort-circuit error detection+once. The data latching will not occur.
Compulsory thermal detection	3	Issue % thermal detection+once. The data latching will not occur.
Write configuration	4	Serial data are transferred to the ‰onfiguration register+
Read configuration	5	%Configuration register+is shifted out to SDO.

^{*}See section of %Brinciple of Operation+for detail timing diagram.

Note: If the number of CLK rising edge is \geq 6 when LE is asserted, LED drivers will ignore the command.

Data output from SDO

Command	SDO after a falling edge of LE
Latch data, in-message error detection is enabled	Error code of in-message error detection; it needs wait t_{pLS} after the falling edge of LE.
Latch data, in-message error detection is disabled	Serial data input; the data is latched into output buffer
Compulsory open-circuit detection	Error code of Compulsory open-circuit detection. it needs wait $t_{\text{ERR-C}}$ *, after the falling edge of LE.
Compulsory short-circuit detection	Error code of Compulsory short-circuit detection t needs wait t _{ERR-C} *, after the falling edge of LE.
Compulsory thermal detection	Thermal report; it needs wait t _{pLS} after the falling edge of LE.
Write configuration	Serial data input; the data is latched into configuration register
Read configuration	Shift out data from configuration register

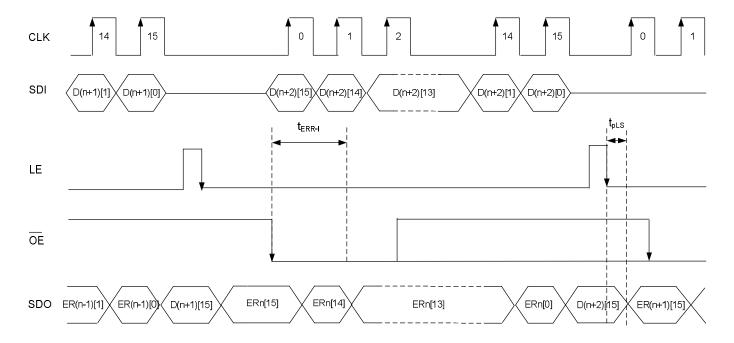
^{*}See section of %Brinciple of Operation+for detail timing diagram

Error code

Command	Error flag for corresponding bit in the shift register			
Open or short error is detected in the channel	0			
Neither open nor short error is detected in the channel (Or detection is suppressed)	1			

If the condition of valid error detection is not matched, the detection is suppressed. Please refer to section of %Brinciple of Operation+for the condition of valid error detection.

Principle of Operation

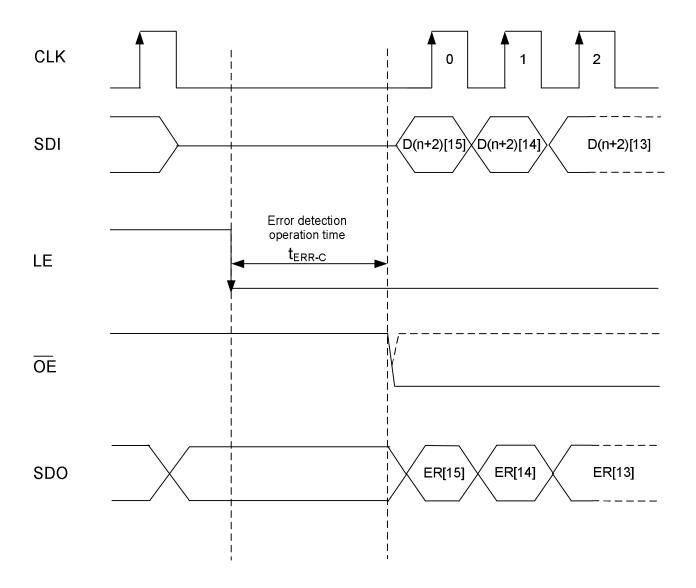

In-Message Error Detection

If the in-message error detection is enabled in the configuration register, the in-message error detection will perform on-the-fly open- and short-circuit detection as data-in and error-out sequentially. The errors are merged and coded with zeros.

The output is detected only when the output data is % and OE pulse width is larger than t_{ERR-I} , preventing from false error report. This is because the detection result is correct only if the LED is lit up. The error code showed as % helps the system identify the errors precisely without comparing data % or data %.

If the in-message error detection is disabled in the configuration register, the error detection will not be performed and the SDO shifts out the data from the shift register which the SDI is shifted into.

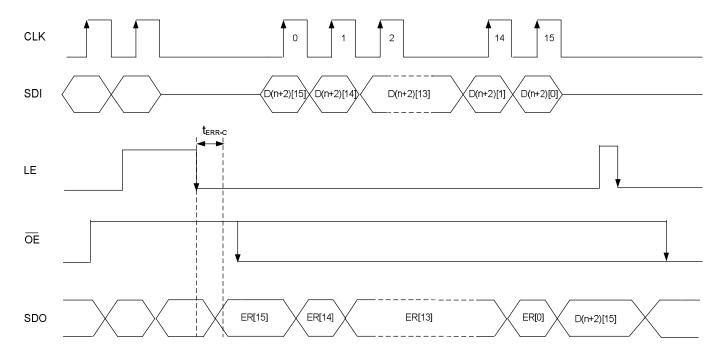
With the in-message error detection, the controller just checked if the data from SDO is %+to identify the error location without considering the input data, \overline{OE} status and issuing any extra command.


1. Condition of valid error detection: (1) Data =+1+(2) \overline{OE} (low) > t_{ERR-l}

Note: If the above condition is not matched, the error detection is suppressed and error codes remain %+

2. After the falling edge of the LE, the time required for the driver to deliver the error report to the shift register is t_{pLS}.

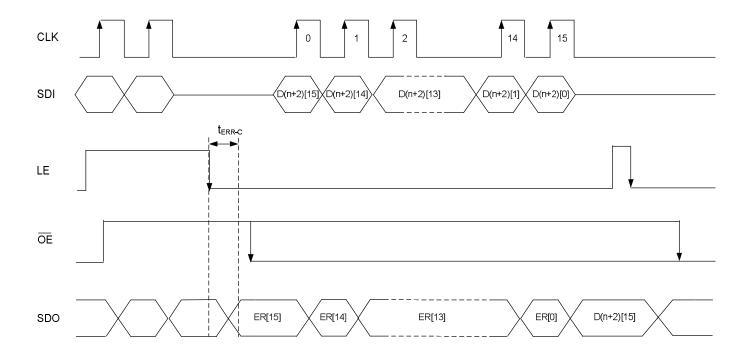
Compulsory Error Detection


Compulsory error detection is %ilent error detection+, also named as %dark+or %dind+error detection. No matter the data is 1 or 0, the output will be turned on with 0.25mA in 700ns in the compulsory error detection mode. The turn-on time and turn-on current are short and small, so that the human eye will not perceive detection and the quality of the video and image are not influenced. According to the issued %control commands+, the compulsory %cilent+error detection will run open-circuit or short-circuit detection separately. If an LED has open- or short-circuit, the error code will be %D+and shifted out through SDO once only.

- 15 -

Compulsory Open-Circuit Detection

The principle of MBI5039 LED open-circuit detection is based on the fact that the LED loading status is judged by comparing the effective voltage value (V_{DS}) of each output port with the target voltage ($V_{OD,TH}$ = 0.35V). Thus, after the command of ‰mpulsory open-circuit detection+, the output ports of MBI5039 will be turned on with 0.25mA in 700ns. Then, the error status saved in the built-in register is shifted out through SDO pin bit by bit while receiving the new data simultaneously. If the compulsory open-circuit detection mode is enabled while running the in-message error detection, MBI5039 will go back to the in-message error detection mode after the compulsory open-circuit detection is finished. Meanwhile, the in-message error detection mode resumes working after the next LE is asserted without any clock toggled.


- 1. Conditions required to activate the open-circuit detection: (1) falling edge of LE and (2) OE = High
- 2. Condition of valid error detection: (1) \overline{OE} =high during t_{ERR-C}

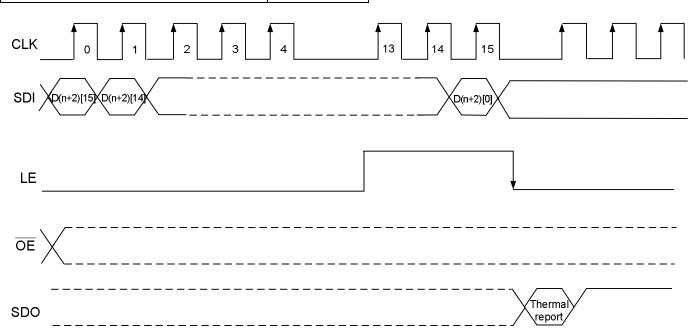
Note: If the above condition is not matched, the error detection is suppressed and error codes remain %...

- 3. At the falling edge of LE, all output channels are turned on within 0.25mA.
- 4. The error detection starts and then loads error result to shift register in t_{ERR-C} duration.
- 5. If the OE is asserted during t_{ERR-C}, the error detection process will be aborted.
- 6. If CLK is toggled before $t_{\text{ERR-C}}$, the shifted-in data in the shift register will be destroyed at $t_{\text{ERR-C}}$.

Compulsory Short-Circuit Detection

When LED is damaged, a short-circuit error may occur. To effectively detect the short-circuit error, the principle of MBI5039 LED short-circuit detection is based on the fact that the LED voltage drop is judged by comparing the effective voltage value (V_{DS}) of each output port with the target voltage (V_{SD.TH} = 0.45xV_{DD}, default). Please refer to the %etting the Threshold Voltage for Short-Circuit Detection+for details. Thus, after the command of %compulsory short-circuit detection+, the output ports of MBI5039 will be turned on with 0.25mA in 700ns. Then, the error status saved in the built-in register is shifted out through SDO pin bit by bit while receiving the new data simultaneously. If the compulsory short-circuit detection mode is enabled while running the in-message error detection, MBI5039 will go back to the in-message error detection mode after the compulsory short-circuit detection is finished. Meanwhile, the in-message error detection mode resumes working after the next LE is asserted without any clock toggled. For the short-circuit detection, users need to consider the response time of LEDs to distinguish the LED error status. Please refer to the *MBI5039 Application Note* about how to test whether the response time of LEDs is fast enough or not.

- 1. Conditions required to activate the short-circuit detection: (1) falling edge of LE and (2) \overline{OE} =High
- 2. Condition of valid error detection: (1) OE = high during $t_{\text{ERR-C}}$

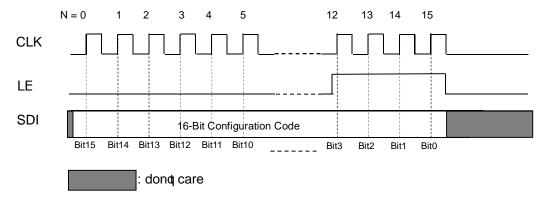

Note: If the above condition is not matched, the error detection is suppressed and error codes remain %...

- 3. At the falling edge of LE, all output channels are turned on within 0.25mA.
- 4. The error detection starts and then loads error result to shift register in t_{ERR-C} duration
- 5. If the $\,$ OE $\,$ is asserted during $t_{\text{ERR-C}}$, the error detection process will be aborted.
- 6. If CLK is toggled before t_{ERR-C}, the shifted-in data in the shift register will be destroyed at t_{ERR-C}.

Compulsory Thermal Detection

The thermal error flag indicates an overheating condition. When ICs junction temperature is over 150°C (typ.), the bit 15 of the shift register is set to %D+.

	Thermal code
The junction temperature of MBI5039 \geq T _{TF}	0
The junction temperature of MBI5039 <t<sub>TF</t<sub>	1


At the falling edge of LE, if the driver is overheated, the code %FFF(HEX)+is delivered to SDO; otherwise, the code %FFF(HEX)+is latched to sift register.

The data $\mathfrak{D}(n+2)$ []+will not be latched into the output buffer.

0

Silent Error Detection and Current Gain

Writing Configuration Code

After entering the writing configuration mode, the system controller sends a 16-bit configuration register setting which must include check bits (bit9 \sim bit6 = 0101) to the 16-bit shift register through the SDI pin. Then the falling edge of LE will transfer the contents in the shift register to a 16-bit configuration register rather than the 16-bit output latch. If the check bits are not equal to %101+, the data will not be updated to the configuration register.

Definition of Configuration Register

MSB															LSB
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
e.g. D	Default '	Value													
	_	_	_	_	-										

0

Bit	Definition	Value	Function
		00	0.33xV _{DD} ±0.1V
F~E	Voltage thresholds for short-circuit	01 (Default)	0.45xV _{DD} ±0.1V
	detection(V _{SD.TH})	10	0.58xV _{DD} ±0.1V
	dotootion(*3D,1H)	11*	0.73xV _{DD} ±0.1V
		00	Reserved bits
	Operation of	01	Enable LE to trigger in-message error detection; SDO shift out error code as % ror Code+section.
D~C		10	Enable OE to trigger in-message error detection; SDO shift out error code as % ror Code+section.
		11 (Default)	Enable OE or LE to trigger in-message error detection; SDO shift out error code as %Error Code+section.
		00 (Default)	Disable in-message error detection
B~A	Activation of	01	
D~A	in-message error detection	10	Enable in-message error detection
		11	
9~6	Check bits	0101	Write in configuration register
5~0	Current gain	000000 ~ 111111	6ф101011 (Default): allow 64-step programmable current gain from 12.5 % to 200%

^{*}Configuration register=11: when both V_{DD} =5V and in the in-message error detection mode, the $V_{SD,TH}$ =0.73x V_{DD} +0.4V. In other conditions, $V_{DS,TH}$ is 0.73x V_{DD} .

Setting the Threshold Voltage for Short-Circuit Detection

The default threshold voltage for short-circuit detection ($V_{SD,TH}$) equals to 0.45x V_{DD} . If the detected voltage is larger than $V_{SD,TH}$, the MBI5039 identifies the LED as short-circuit.

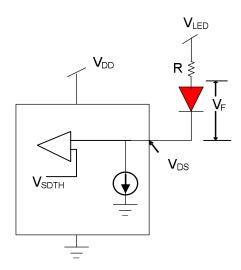


Figure 3

MBI5039 provides settable $V_{SD,TH}$ for different LED configuration. For example, if each output port of MBI5039 drives one red LED, the $V_{SD,TH}$ shall be set larger. If each output port of MBI5039 drives one blue LED, the $V_{SD,TH}$ shall be set smaller. In addition, the system shall consider accumulated V_F of the LED to set the suitable $V_{SD,TH}$.

The system needs to set the suitable $V_{SD,TH}$, V_{LED} , and V_{DD} for different color LEDs.

Consider:

Normal condition : $V_{DS}=V_{LED}-IxR-V_{F(normal)}$

Short-circuit condition: V_{DS}=V_{LED} - I x R - V_{F(short)}; V_{F (short)}<V_{F (normal)}

Select V_{SD.TH} to meet:

 $V_{LED} - IxR - V_{F(normal)} < V_{SD,TH} < V_{LED} - IxR - V_{F(short)}$

V_F and I are the values with detection current: 0.25mA (Compulsory error detection) or normal current (in-message error detection)

The variation of each value should be considered.

For example,

a green LED,

 $V_{F (normal)} = 3.5 \sim 3.7 V,$

 $V_{F (short)} < 1.5 V$,

and R is not used (R=0),

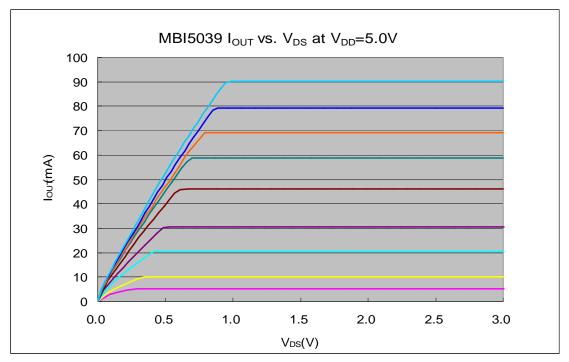
 $V_{LED} = 4.7 \sim 5.3 V$

Therefore, in the normal condition, V_{DS}=1~1.8V,

and in the short-circuit condition = V_{DS} >3.2V

If $V_{DD}=5V$, $V_{DS, TH}=0.45xV_{DD}=2.25V$ is a good choice;

if V_{DD} =3.3V, $V_{DS, TH}$ =0.73x V_{DD} =2.41V is a good choice.


In some cases, the V_{DD} , V_{LED} , and R may need to be optimized for different color LEDs. With the adjustable $V_{SD,TH}$, the selections of these values can be more flexible and reduce the necessity of using dual voltage for operation and error detection.

For the compulsory error detection, the $V_{F(normal)}$ and $V_{F(short)}$ shall consider the LED current to be 0.25mA. These two values will be smaller than those in the normal current.

Constant Current

In LED display applications, MBI5039 provides nearly no current variations from channel to channel and from IC to IC. This can be achieved by:

- 1) While $I_{OUT} \le 90 \text{mA}$, $V_{DD} = 5 \text{V}$, the maximum current skew between channels is less than $\pm 1.5\%$ (typical) and that between ICs is less than $\pm 3\%$ (typical).
- 2) In addition, the characteristics curve of output stage in the saturation region is flat and users can refer to the charts as shown below. Thus, the output current keeps constant regardless of the variations of LED forward voltages (V_F) . The output current level in the saturation region is defined as output target current $I_{out,target}$.

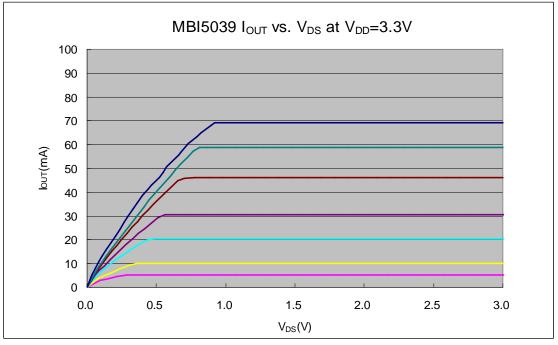
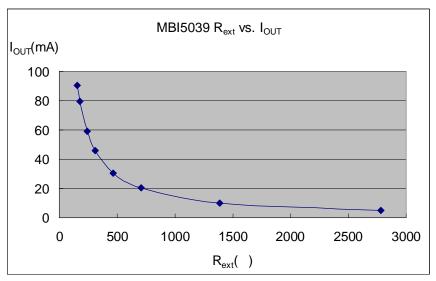
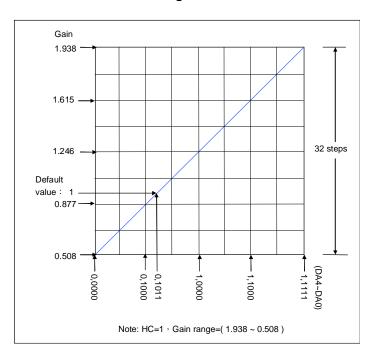


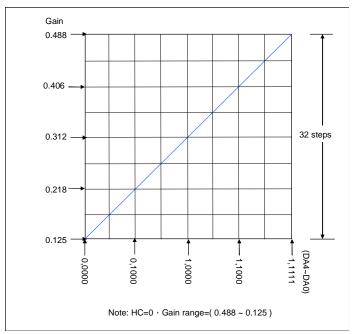
Figure 4

Setting Output Current

The output current (I_{OUT}) is set by an external resistor, R_{ext} . The default relationship between I_{OUT} and R_{ext} is shown in the following figure.




Figure 5


Also, the output current can be calculated from the equation:

 $V_{R-EXT}=0.61xG; I_{OUT}=(V_{R-EXT}/R_{ext})x23.0$

Whereas R_{ext} is the resistance of the external resistor connected to R-EXT terminal and $V_{\text{R-EXT}}$ is its voltage. G is the digital current gain, which is set by the bit 5 to bit 0 of the configuration register. The default value of G is 1. For your information, the output current is about 20.04mA when R_{ext} =700 and 61mA when R_{ext} =230 if G is set to default value 1. The formula and the setting for G are described in the next section.

Current Gain Adjustment

The 6 bits (bit 5~bit 0) of the configuration register set the gain of output current, i.e., G. As total 6-bit in number, i.e., ranged from 6φ000000 to 6φ111111, these bits allow the user to set the output current gain up to 64 levels. These bits can be further defined inside configuration register as follows:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
	-	-	-	-		-	-	-	1	H	DA4	DA3	DA2	DA1	DA0

- 1. Bit 5 is HC bit. The setting is in low current band when HC=0, and in high current band when HC=1.
- 2. Bit 4 to bit 0 are DA4 ~ DA0.

The relationship between these bits and current gain G is:

HC=1, D=(65xG-33)/3

HC=0, D=(256xG-32)/3

and D in the above decimal numeration can be converted to its equivalent in binary form by the following equation:

 $D = DA4x2^4 + DA3x2^3 + DA2x2^2 + DA1x2^1 + DA0x2^0$

In other words, these bits can be looked as a floating number with 1-bit exponent HC and 5-bit mantissa DA4~DA0. For example,

HC=1, G=1.246, D=(65x1.246-33)/3=16

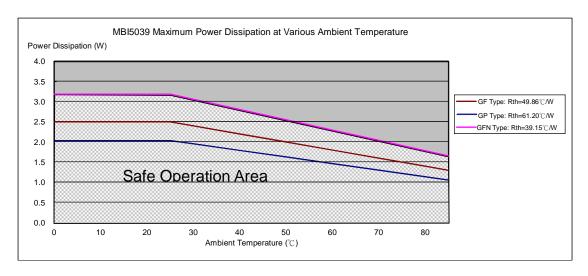
the D in binary form would be:

 $D=16=1x2^4+0x2^3+0x2^2+0x2^1+0x2^0$

The 6 bits (bit 5~bit 0) of the configuration register are set to 64p110000.

Staggered Delay of Output

MBI5039 has a built-in delay circuit to perform delay mechanism. Among output ports exist a graduated 5ns delay time among \overline{OUTn} and $\overline{OUTn+1}$, by which the output ports will be turned on at a different time so that the instant current from the power line will be lowered.


Package Power Dissipation (P_D)

The allowable maximum package heat dissipation is determined as $P_D(max)=(Tj. Ta)/R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is

 $P_D(act) = (I_{DD}xV_{DD}) + (I_{OUT}xDutyxV_{DS}x16)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

$$\begin{split} I_{OUT} = &\{[(Tj.~Ta)/R_{th(j\text{-}a)}].~(I_{DD}xV_{DD})\}/V_{DS}/Duty/16,\\ where~Tj = 150^{\circ}C. \end{split}$$

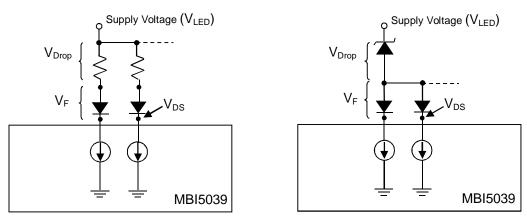
The maximum power dissipation, $P_D(max)=(Ti. Ta)/R_{th(i:a)}$, decreases as the ambient temperature increases.

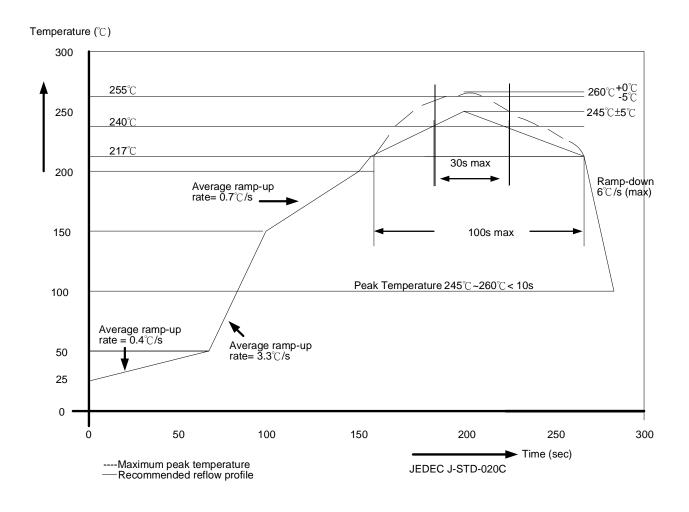
Load Supply Voltage (V_{LED})

MBI5039 is designed to operate with V_{DS} ranging from 0.4V to 1.0V, considering the package power dissipating limits. V_{DS} may be higher enough to make $P_{D(act)} > P_{D(max)}$ when $V_{LED} = 5V$ and $V_{DS} = V_{LED}$. V_F , in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer (V_{DROP}).

A voltage reducer lets $V_{DS}=(V_{LED}, V_F)$. V_{DROP} .

Resisters or zener diode can be used in the applications as shown in the following figures.

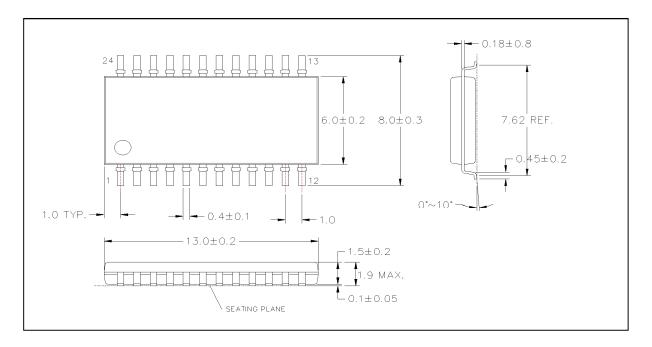



Figure 6

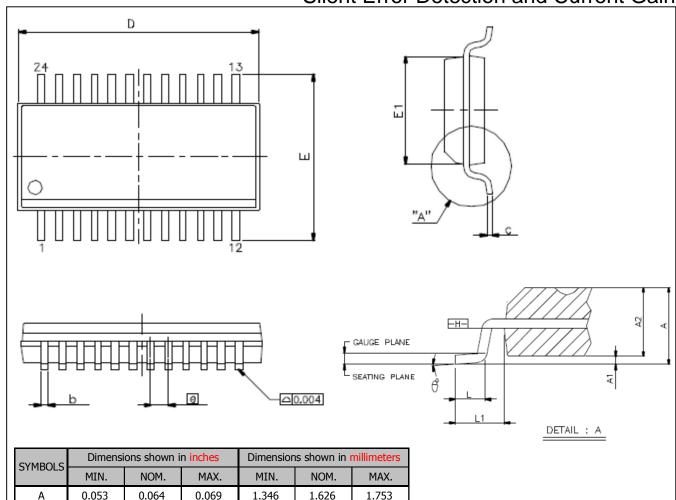
Switching Noise Reduction

LED driver ICs are frequently used in switch-mode applications which always behave with switching noise due to parasitic inductance on PCB. To eliminate switching noise, refer to %Application Note for 8-bit and 16-bit LED Drivers- Overshoot+:

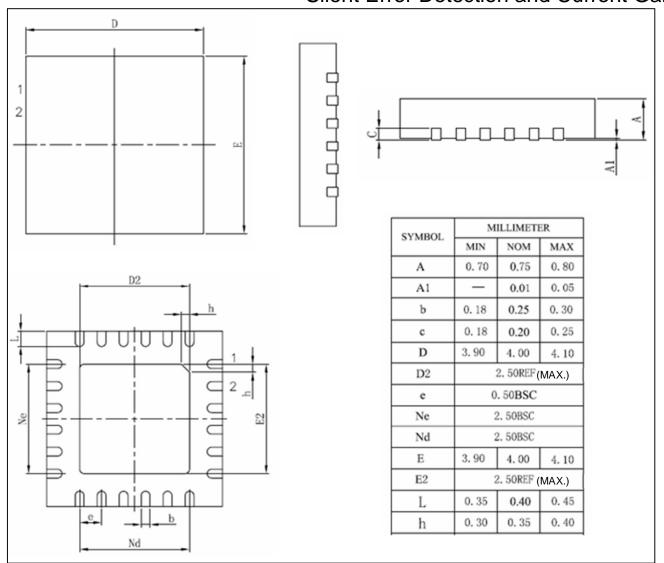
Soldering Process of "Pb-free & Green" Package Plating*


Macroblock has defined "Pb-Free & Green " to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245 °C to 260°C for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.

Package Thickness	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm³ ≥2000		
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C		
1.6mm . 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C		
≧2.5mm	250 +0 °C	245 +0 °C	245 +0 °C		

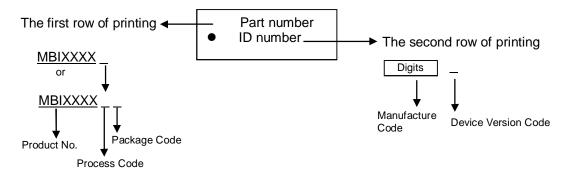

*Note: For details, please refer to Macroblocks Rolicy on Pb-free & Green Package+:

Package Outline


Note: The unit for the outline drawing is mm.

MBI5039GF Outline Drawing

SYMBOLS	Dimensi	ons shown i	n inches	Dimensions shown in millimeters			
STMBOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.053	0.064	0.069	1.346	1.626	1.753	
A1	0.004	0.006	0.010	0.102	0.152	0.254	
A2	_	_	0.059	_	_	1.499	
D	0.337	0.341	0.344	8.560	8.661	8.738	
Е	0.228	0.236	0.244	5.791	5.994	6.198	
E1	0.150	0.154	0.157	3.810	3.912	3.988	
b	0.008	1	0.012	0.203		0.305	
С	0.007	1	0.010	0.178	1	0.254	
L	0.016	0.025	0.050	0.406	0.635	1.270	
е		0.025 BASIC	,	0.635 BASIC			
L1		0.041 BASIC		1.0414 BASIC			
Θ °	0 —		8	0		8	


MBI5039 GP Outline Drawing

MBI5039 GFN Outline Drawing

Remark: The thermal pad size may exist a tolerance due to the manufacturing process, please use the maximum dimensions-D2(max. 2.50mm) x E2(max. 2.50mm) for the thermal pad layout. In addition, to avoid the short circuit risk, the vias or circuit traces shall not pass through the maximum area of thermal pad. Note: The unit of the outline drawing is millimeter (mm).

Product Top-mark Information

Product Revision History

Datasheet version	Device version code			
V1.00	A			
V1.01	A			
V1.02	A			
V2.00	В			
VA.00	В			
VA.01	В			
VA.02	В			

Product Ordering Information

Part Number	RoHS Compliant Package	Weight (g)		
	Type			
MBI5039GF-B	SOP24L-300-1.00	0.28		
MBI5039GP-B	SSOP24L-150-0.64	0.11		
MBI5039GFN-B	QFN24L-4*4-0.5	0.0379		

^{*}Please place your order with the "product ordering number" information on your purchase order (PO).

16-Channel Constant Current LED Sink Driver with

Silent Error Detection and Current Gain

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. Macroblocks products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblocks products in components intended for surgical implant into the body, or other applications in which failure of Macroblocks products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

Related technologies applied to the product are protected by patents. All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.